Теория и методы решения нелинейных дифференциальных уравнений

Дисциплина читается на первом курсе магистратуры Института математики и фундаментальной информатики СФУ.
Математические модели, содержащие нелинейные дифференциальные уравнения возникают при формализации различных процессов. На сегодняшний день нелинейные дифференциальные уравнения составляют важное самостоятельное направление исследований в области математической физики.
В курсе изучаются методы исследования стационарных и эволюционных нелинейных операторных уравнений. Для изучения нестационарных дифференциальных уравнений предполагается изучение специальных функциональных пространств. В основе исследования нелинейных уравнений через операторные уравнения лежит метод монотонности.
Также отдельно рассматривается метод слабой аппроксимации (метод расщепления на дифференциальном уровне), как один из современных методов решения нелинейных задач математической физики.
Что же есть на сайте по данной дисциплине ?
Изучая данную дисциплину Вам предстоит усвоить следующие разделы:
- Теоремы существования и единственности решения для стационарных нелинейных операторных уравнений (понятия коэрцитивности, слабой компактности, монотонности, полуограниченной вариации оператора).
- Метод Галеркина, слабая и сильная сходимость галеркинских приближений.
- Краевые задачи как операторные уравнения в Банаховых пространствах
- Функциональные пространства (пространства Cm(S,X), Lp(S,X)), их полнота, тип и свойства.
- Теоремы существования и единственности решения для нестационарных/эволюционных нелинейных операторных уравнений.
- Метод слабой аппроксимации (метод расщепления на дифференциальном уровне).
- Понятие обратных и некорректных задач, подходы к их решению.
Что нужно знать, чтобы понимать дисциплину ?
Для изучения дисциплины «Теория и методы решения нелинейных дифференциальных уравнений» необходимо, чтобы студентами были усвоены дисциплины
- Математический анализ (см. также пособие)
- Дополнительные главы математического анализа (Конспект лекций, библиотека СФУ)
- Дифференциальные уравнения
- Уравнения математической физики
- Функциональный анализ (Конспект лекций, Опорный конспект лекций, библиотека СФУ)
- Методы вычислений (Конспект лекций, библиотека СФУ)
- Вопросы прикладного функционального анализа (Конспект лекций, библиотека СФУ)
Данная дисциплина служит основной для приобретения навыков, необходимых для написания магистерской диссертации.
Какую литературу использовать для подготовки по курсу "Теория и методы решений нелинейных дифференциальных уравнений"?
Список используемой литературы (в электронном и бумажном вариантах) по ссылке.Ваши комментарии:
Вконтакте |
|