Билет 1.

- 1. Дать определение монотонного оператора $A: B \to B^*$.
- 2. Дать определение пространства $L_p(S,X)$, записать норму, указать тип.
- 3. Сформулировать лемму об остром угле для стационарного случая.
- 4. Сформулировать условие коэрцитивности для оператора $A = -\Delta = -\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}},$ $A: \overset{0}{H^{1}}(\Omega) \to H^{-1}(\Omega).$ Здесь $H^{-1}(\Omega) = \left(\overset{0}{H^{1}}(\Omega)\right)^{*}.$

Билет 2.

- 1. Дать определение семинепрерывного оператора $A: B \to B^*$. Пример семинепрерывного оператора.
- 2. Дать определение строго монотонного оператора $A:B\to B^*$. Пример строго монотонного оператора.
- 3. Метод Галеркина для операторного уравнения Au = h, $A: B \to B^*$, (B банахово пространство, B^* пространство, сопряженное к B) с семинепрерывным оператором. Алгоритм построения последовательности галеркинских приближений.
- 4. Сформулировать условие ограниченности для оператора $A = -\Delta = -\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}},$ $A: \overset{0}{H^{1}}(\Omega) \to H^{-1}(\Omega).$ Здесь $H^{-1}(\Omega) = \left(\overset{0}{H^{1}}(\Omega)\right)^{*}.$

Билет 3.

- 1. Дать определение Банахова и Гильбертова пространства. Примеры пространств.
- 2. Дать определение коэрцитивного оператора $A: B \to B^*$.
- 3. Показать, что выражение

$$||u||_{L_p(S,X)} = \left(\int\limits_S ||u||_X^p ds\right)^{\frac{1}{p}}$$

задает норму в пространстве $L_p(S, X)$.

4. Сформулировать условие семинепрерывности для оператора $A = -\Delta = -\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}},$ $A: \overset{0}{H^{1}}(\Omega) \to H^{-1}(\Omega).$ Здесь $H^{-1}(\Omega) = \left(\overset{0}{H^{1}}(\Omega)\right)^{*}.$

Билет 4.

- 1. Дать определение пространств $C^k(\Omega)$, $C^k(\overline{\Omega})$, $C^k(\overline{\Omega})$, $L_p(\Omega)$, $H_1(\Omega)$, $H_1(\Omega)$. Какие из них являются банаховыми, гильбертовыми? Выписать (где возможно) норму, скалярное произведение.
- 2. Дать определение строго монотонного оператора $A: B \to B^*$.
- 3. Метод Галеркина для операторного уравнения Au = h, $A: B \to B^*$, (B -банахово пространство, B^* пространство, сопряженное к B) с семинепрерывным оператором. Построение Галеркинской последовательности.
- 4. Доказать, что функция $u=xt, x\in (a,b), t\in [0,1]$ измерима и интегрируема по Бохнеру.

Билет 5.

- 1. Дать определение сепарабельного и рефлексивного пространств.
- 2. Определить понятие множества функций $(S \to X)$. Определение функции класса $(S \to X)$ дифференцируемой в точке.
- 3. Метод Галеркина для операторного уравнения $Au = h, A : B \to B^*, (B$ банахово пространство, B^* пространство, сопряженное к B) с оператором с полуограниченной вариацией. Построение Галеркинской последовательности.
- 4. Доказать, что выражение

$$||u||_{C^m(S,X)} = \sum_{j=0}^m \sup_{t \in S} ||u^{(j)}(t)||_X$$

задает норму в пространстве $C^{m}(S, X)$.

Билет 6.

- 1. Определить понятие множества функций $(S \to X)$. Определение функции класса $(S \to X)$ дифференцируемой на множестве.
- 2. Дать определение простой функции из класса $(S \to X)$. Интеграл Бохнера от простой функции.
- 3. Доказать, что функция $u=xt, x\in (a,b), t\in [0,1]$ измерима и интегрируема по Бохнеру.
- 4. Привести краевую задачу $-\Delta u = f$, $u \mid_{\partial\Omega} = 0$, где Δ оператор Лапласа, $\Omega \subset E_n$ ограниченная область с кусочно-гладкой границей $\partial\Omega$, $f \in L_2(\Omega)$, к операторному уравнению с коэрцитивным, слабо компактным оператором.

Билет 7.

- 1. Дать определение пространства C(S, X), записать норму, указать тип.
- 2. Дать определение функции $u \in (S \to X)$ интегрируемой по Бохнеру на множестве S, на множестве $B \subset S$. Привести пример.
- 3. Сформулировать теорему Рисса о представлении.
- 4. Сформулировать условие строгой монотонности оператора $A=-\Delta=-\sum_{i=1}^n \frac{\partial^2}{\partial x_i^2},$ $A: \overset{0}{H^1}(\Omega)\to H^{-1}(\Omega).$ Здесь $H^{-1}(\Omega)=\left(\overset{0}{H^1}(\Omega)\right)^*.$

Билет 8.

- 1. Дать определение коэрцитивности оператора $A(t)(u): L_p((0,T),X) \to L_{p'}((0,T),X^*).$
- 2. Дать определение существенно ограниченной функции.
- 3. Доказать, что выражение

$$||u||_{C^m(S,X)} = \sum_{j=0}^m \sup_{t \in S} ||u^{(j)}(t)||_X$$

задает норму в пространстве $C^m(S, X)$.

4. Сформулировать условие полуограниченной вариации для оператора $A = -\Delta = -\sum_{i=1}^n \frac{\partial^2}{\partial x_i^2}, \ A: \overset{0}{H^1(\Omega)} \to H^{-1}(\Omega).$ Здесь $H^{-1}(\Omega) = \left(\overset{0}{H^1(\Omega)}\right)^*.$

Билет 9.

- 1. Дать определение пространства $L_{\infty}(S,X)$, записать норму, указать тип..
- 2. Дать определение семинепрерывности оператора $A(t)(u): L_p((0,T),X) \to L_{p'}((0,T),X^*).$
- 3. Сформулировать лемму об остром угле для стационарного случая.
- 4. Сформулировать условие коэрцитивности для оператора $A = -\Delta = -\sum_{i=1}^{n} \frac{\partial^{2}}{\partial x_{i}^{2}},$ $A: \overset{0}{H^{1}}(\Omega) \to H^{-1}(\Omega).$ Здесь $H^{-1}(\Omega) = \left(\overset{0}{H^{1}}(\Omega)\right)^{*}.$

Билет 10.

- 1. Определить понятие множества функций $(S \to X)$. Определение функции класса $(S \to X)$ дифференцируемой в точке.
- 2. Дать определение семинепрерывного оператора $A: B \to B^*$.
- 3. Сформулировать теорему единственности решения операторного уравнения Au = h с коэрцитивным, слабо компактным и строго монотонным оператором.
- 4. Доказать, что выражение

$$||u||_{C^m(S,X)} = \sum_{j=0}^m \sup_{t \in S} ||u^{(j)}(t)||_X$$

задает норму в пространстве $C^m(S, X)$.

Билет 11.

- 1. Дать определение оператора $A: B \to B^*$ с полуограниченной вариацией.
- 2. Дать определение монотонности оператора $A(t)(u): L_p((0,T),X) \to L_{p'}((0,T),X^*).$
- 3. Доказать, что функция $u=xt,\,x\in(a,b),\,t\in[0,1]$ измерима и интегрируема по Бохнеру.
- 4. Пусть $g \geq 0$ финитная в Ω непрерывная функция. Является ли нормой в $L_2(\Omega)$ функция

$$\rho(u) = \int_{\Omega} g(x)u^{2}(x) dx?$$